

MDCAT Physics Chapter 4 Circular Motion MCQ's Test

Sr	Questions	Answers Choice
1	A particle is moving with constant speed by keeping itself at constant distance from a fixed point in a given plane. Its motion is	A. Circular motion B. Uniform circular motion C. Uniform circular motion with fixed axis of rotation D. Uniform circular motion with axis of rotation not defined
2	A body moving in a circular path with a constant speed has a	A. Constant velocity B. Constant kinetic energy C. Constant acceleration D. <div>Constant displacement</div>
3	A body revolved around the sun 27 times faster then the earth what is the ratio of their radii	A. 1/27 B. 1/4 C. 1/9 D. 1/3
4	For a particle in circular motion the centripetal acceleration	A. may be more or less than its tangential acceleration B. equal to its tangential acceleration a C. more than its tangential acceleration D. less than its tangential acceleration
5	For a particle moving in uniform circular motion	A. Velocity is transverse and acceleration is radial B. Velocity is radial and acceleration is transverse C. Both velocity and acceleration are radial D. Both velocity and acceleration are transverse
6	Angular displacement in rotational motion is expressed in	A. m B. m^2 C. Nm^{-1} D. Nm s
7	In uniform circular motion, the factor that remains constant is:	A. Linear velocity B. Acceleration C. Speed D. All of these
8	A particle revolves round a circular path with a constant speed. The acceleration of the particle is	A. Along the circumference of the circle B. Along the tangent C. Along the radius D. Zero
9	The ratio of the SI unit to the CGS unit of torque is.	A. 10^7 B. 10^9 C. 10^0 D. 10^3
10	The force which provides the necessary centripetal force to keep the mud in circular path is called	A. cohesive force B. adhesive force C. frictional force D. <div>gravitational force</div>
11	A satellite moving round the earth constitute	A. An inertial frame of reference B. Non inertial frame C. Neither inertial nor non inertial D. Both inertial and non-inertial
12	When a particle moves in a uniform circular motion. It has:	A. Radial velocity and radial acceleration B. Tangential velocity and radial acceleration C. Tangential velocity and tangential acceleration D. Radial velocity and tangential acceleration

13	For a particle in uniform circular motion the relation $a = r \square$ of accelerations hold. The acceleration 'a'	A. is centripetal acceleration B. Is tangential acceleration C. is radical acceleration D. both A and B
14	A car of 1000kg traveling at 20m/sec rounds a curve of radius 100m. Find the necessary centripetal force	A. 4×10^3 kg m/s ² B. 3×10^3 kg m/s ² C. 5×10^3 kg m/s ² D. 4.5×10^3 kg m/s ²
15	When a particle moves in a circle the angle between it linear velocity and the angular velocity is always	A. 0° B. 180° C. 90° D. none of them
16	Two satellites are going around the earth at a height of 250 km and 450 km respectively. If angular speed for both is same, then centripetal acceleration will be.	A. more for first B. more for second C. same for both D. nothing can be decided
17	The geostationary satellite is:	A. Stationary B. Rotating very fastly C. Rotating with the period of earth D. Rotating very slowly
18	Ten second after an electric fan is turned on, the fan rotates at 300rev/min. its average angular acceleration is	A. 30 rad/s^2 B. 3.14 rad/s^2 C. 30 rev/s^2 D. 500 rev/s^2
19	The angular analogue of linear displacement is called	A. angular velocity B. angular displacement C. angular momentum D. moment of force
20	A stone of mass 0.5kg tied with a string of length 1m is moving in a horizontal circle with a speed of 4ms ⁻¹ . The tension acting on the string in newton is:	A. 2 B. 0.2 C. 8 D. 0.8