

Physics ICS Part 1 Chapter 10 Online Test

Sr	Questions	Answers Choice
1	A moving charged particle is surrounded by	A. <p>Electric field only</p> B. <p>Magnetic field only</p> C. <p>Both electric and magnetic field</p> D. <p>No field</p>
2	The SI unit of magnetic induction or flux density is.	A. <p>Tesla</p> B. <p>Gauss</p> C. <p>Ampere</p> D. <p>Weber</p>
3	If the current passing through a wire in a magnetic field is doubled, the magnetic force would become.	A. <p>Twice</p> B. <p>Six times</p> C. <p>Five times</p> D. <p>Four times</p>
4	The unit $\text{NA}^{-1} \text{m}^{-1}$ is called	A. <p>Weber</p> B. <p>Tesla</p> C. <p>Coulomb</p> D. <p>None of these</p>
5	Electrons while moving perpendicularly through a uniform magnetic field are.	A. <p>Deflected towards north pole</p> B. <p>Deflected towards south pole</p> C. <p>Deflected along circular path</p> D. <p>Not deflected at all</p>
6	The direction of induced current is always so as to oppose the change. Which causes the current. This is the statement of.	A. <p>Lenz's law</p> B. <p>Faraday's law</p> C. <p>Gauss's law</p> D. <p>Joule's law</p>
7	The unit of flux density is.	A. <p>NA $^{-1} \text{m}^{-1}$ </p> B. <p>NA m^{-1} </p> C. <p>N m A $^{-2}$ </p> D. <p>Nm A</p>
8	Magnetic field is detected by	A. <p>Ammeter</p> B. <p>Galvanometer</p> C. <p>Magnetic compass</p> D. <p>Avometer</p>
9	What is the value of the current in a wire of 10 cm long of the right angle to a uniform magnetic field of 0.5 Weber/m 2 when the force acting on the wire is 5 N ?	A. <p>1 A</p> B. <p>100 A</p> C. <p>10 A</p> D. <p>1000 A</p>
10	Two free parallel straight wires carrying currents in the opposite direction	A. <p>Do not affect each other</p> B. <p>Repel each other</p> C. <p>Attract each other</p> D. <p>Get rotated</p>
11	The force exerted on a wire of 1 meter length carrying 1 ampere current placed at right angle to the magnetic field is called.	A. <p>Magnetic field intensity</p> B. <p>Magnetic Induction</p> C. <p>Magnetic flux</p> D. <p>None of these</p>
12	Production of induced emf in a coil is linked with.	A. <p>Nature of coil</p> B. <p>Shape of coil</p> C. <p>Flux through coil</p> D. <p>Change in flux through coil</p>
13	Lenz's law is consistent with	A. <p>Law of conservation of energy</p> B. <p>Law of conservation of charge</p> C. <p>Law of conservation of momentum</p> D. <p>Law of conservation of mass</p>

14	The radius of curvature of the path of a charged particle in a uniform magnetic field is directly proportional to	A. <p>The particle's charge</p> B. <p>The particle's momentum</p> C. <p>The particle's energy</p> D. <p>The flux density of the field</p>
15	The SI Unit of magnetic flux is.	A. <p>Weber</p> B. <p>N m-1</p> C. <p>N m A-1</p> D. <p>Both a and c</p>
16	Two free parallel straight wires carrying current in the same direction	A. <p>Attract each other</p> B. <p>Repel each other</p> C. <p>Do not affect each other</p> D. <p>Get rotated</p>
17	Total number of magnetic lines of force passing normally through unit area is called.	A. <p>Flux density</p> B. <p>Magnetism</p> C. <p>Flux</p> D. <p>Magnetic flux</p>
18	A 0.50 T field over an area of 2 m ² which lies at angle of 60 degree to the field, then the magnetic flux is.	A. <p>0.50 weber</p> B. <p>0.866 weber</p> C. <p>0.75 weber</p> D. <p>4 weber</p>
19	When a charged particle is projected perpendicular to uniform magnetic field, its trajectory is.	A. <p>A circle</p> B. <p>Ellipse</p> C. <p>A helix</p> D. <p>Straight line</p>
20	The number of magnetic lines of force passing through any surface is known as.	A. <p>Magnetism</p> B. <p>Electric flux</p> C. <p>Magnetic flux</p> D. <p>Flux density</p>