

Chords and Arcs

Sr	Questions	Answers Choice
1	The chord length of a circle subtending a central angle of 180° is always:	A. Less than radial segment B. Equal to the radial segment C. Double of the radial segment D. None of these
2	Equal chords of a circle (or of congruent circles) subtend equal at the centre (corresponding centres):	A. Arcs B. Angles C. Regions D. Chords
3	The semi circumference, and the diameter of a circle both subtend a central angle of:	A. 90° B. 180° C. 270° D. 360°
4	If two arcs of a circle (or of congruent circles) are congruent, then the corresponding chord are:	A. Perpendicular B. Parallel C. Bisect each other D. Equal
5	A pair of chords of a circle subtending two congruent central angles is:	A. Congruent B. Incongruent C. Over lapping D. Parallel
6	An arc substends a central angle of 40° then corresponding chord will substend a central angle of:	A. 20° B. 40° C. 60° D. 80°
7	If a chord of a circle subtends a central angle of 60°, then the length of the chord and the radial segment arc:	A. Congruent B. Incongruent C. Parallel D. Perpendicular
8	The boundary traced by a moving point in a circle its:	A. Circumference B. Diameter C. Radius D. Area
9	If the angles subtended by two chords of a circle (or congruent circles) at the centre (corresponding centre) are equal, the are equal:	A. Lines B. Segments C. Chords D. Arcs
10	Any portion of the circumference will be known as of the circle:	A. A chord B. An arc C. A tangent D. An angle
11	An arc subtends a central angle of 40° then the corresponding chord will subtend a central angle of:	A. 20° B. 40° C. 60° D. 80°
12	A 4cm long chord subtends a central angle of 60°. The radial segment of this circle is:	A. 1 B. 2 C. 3 D. 4
13	In an arc of circle substends a central angle 60°, then corresponding chord will make central angle:	A. 20° B. 40° C. 60° D. 80°
14	If an arc of a circle subtends a central angle of 60° , then the corresponding chord of the arc will make the central angle of:	A. 20° B. 40° C. 60° D. 80°
15	The length of a chord and the radial segment of a circle are congruent, the central angle made by the chord will be:	A. 30° B. 45° C. 60° D. 75°

6	The circular region bounded by an arc of a circle and its two corresponding radial segments is called a:	A. Sectorof the circle B. Areaof the circle C. Radiusof the circle D. Circumferenceof the circle
7	The straight line joining any two points of the circumference is called:	A. Segment of circle B. Arcof circle C. Chordof circle D. Tangentof circle
18	Out of two congruent arcs of a circle, if one arc makes a central angle of 30° then the other arc will subtend the central angle of:	A. 15° B. 30° C. 45° D. 60°
19	The arcs opposite to incongruent central angles of a circle are always:	A. Congruent B. Incongruent C. Parallel D. Perpendicular
20	If two cords of a circle (of of congruent circles) are equal, then their corresponding arcs (minor, major or semi circular) are:	A. Proportional B. Equal C. Congruent D. Bisecting chords