ECAT Pre General Science Mathematics Chapter 6 Quadratic Equations Online Test | Sr | Questions | Answers Choice | |----|--|---| | 1 | Question Image | | | 2 | The solution of equation $x^2 + 2 = 0$ in the set of real number is | A. Infinite set B. Singleton set C. Null set D. None of these | | 3 | If a, β are the roots of the equation x2 - 8x + p = 0 and a2 + β 2= 40, then value of p is | A. 8
B. 12
C. 10
D. 14 | | 4 | If one root of $5x^2 + 13x + k = 0$ be the reciprocal of the other root the value of k is | A. 0
B. 2
C. 1
D. 5 | | 5 | The roots of the equation $4x - 3.2x + 2 + 32 = 0$ would include | A. 1 and 3
B. 1 and 4
C. 1 and 2
D. 2 and 3 | | 6 | The two parts into which 57 should be divided so that their product is 782 are | A. 43,14
B. 34,23
C. 33,24
D. 44,13 | | 7 | If x - 1 is a factor of x4 - 5x2 + 4 then other factor is | A. (x + 2)2(x - 1)
B. (x + 2)(x - 1)2
C. (x+2)(x2- x- 2)
D. (x + 2)2(x - 1)2 | | 8 | (1+w)(1+w2)(1+w4)(1+w8)50 factors | A. 0
B1
C. 1
D. 2 | | 9 | A polynomial of arbitrary degree | A. $f(x) = 0$
B. $f(x) = x$
C. $f(x) = a$
D. $f(x) = ax + b, a \ne 0$ | | 10 | The roots of $ax^2 + bx + c = 0$ are always unequal if | A. b2 - 4ac = 0
B. b2- 4ac ≠ 0
C. b2- 4ac > 0
D. b2- 4ac ≥ 0 | | 11 | The sum of the roots of the equation $x^2 - 6x + 2 = 0$ is | A6
B. 2
C2
D. 6 | | 12 | The positive value of k for which the equation $x^2 + kx + 64 = 0$ has one of the roots 0 | A. 4
B. 64
C. 8
D. All values of k | | 13 | If a,β are the roots of the equation $x^2 + kx + 12 = 0$ such that $a - \beta = 1$, the value of k is | A. 0
B. ±1
C. ±5
D. ±7 | | 14 | Consider the equation $px2 + qx + r = 0$ where p,q,r are real The roots are equal in magnitude but opposite in sign when | A. $q = 0$, $r = 0$, $p \neq 0$
B. $p = 0$, $qr \neq 0$
C. $r = 0$, $pq \neq 0$
D. $q = 0$, $pq \neq 0$ | | 15 | If the equation x2+2x-3=0 and x2+3x-k=0 have a common root then the non - zero value of k is | A. 1
B. 3
C. 2
D. 4 | | 16 | The condition for ax2 + bx c to be expressed as the product of linear polynomials is | A. b4 - 4ac =0
B. b4- 4ac ≥0
C. b4- 4ac <0 | | | | D. b4= 4ac | |----|--|---| | 17 | The expression x2 - x + 1 has | A. One proper linear factorB. No proper linear factorC. Two proper linear factorsD. None of these | | 18 | The value of x for which the polynomials x2 - 1 and x2 -2x + 1 vanish simultaneously is | A. 2
B. 1
C1
D2 | | 19 | $(x+a)(x+b)(x+c)(x+) = k$, $k\neq 0$ is reducible to quadratic form only if | A. a+b=c+d
B. a+c=b+d
C. a+d=b+c
D. All are correct | | 20 | If w+w2 is a root of $(x+1)(x+2)(x+3)(x+4) = k$, then | A. k=0
B. k=1
C. k=w
D. k=w2 | | 21 | If a,β are the roots of ax2+bx+c=0,the equation whose roots are doubled is | A. ay2 +2by+c=0 B. ay2+2by+4c=0 C. ay2+2by+c=0 D. ay2+by+4c=0 | | 22 | The roots of ax2+bx+c=0 are | A. Rational \Leftrightarrow b2 -4 ac \ge 0
B. Irrational \Leftrightarrow b2-4 ac > 0
C. Real \Leftrightarrow b2-4 ac \ne 0
D. Rational \Leftrightarrow b2-4 ac $=$ 0 | | 23 | The roots of (b-c)x2+(c-a) x+a-b=0 are equal if | A. 2b = a+c
B. 2a = b+c
C. 2c = a+b
D. a + b + c =0 | | 24 | The roots of px2 - (p-q)x-q=0 are | A. equal B. Irrational C. Rational D. Imaginary | | 25 | The graph of a quadratic function is | A. Circle B. Ellipse C. Parabola D. Hexagon | | 26 | The condition for polynomial equation $ax^2 + bx + c = 0$ to be quadratic is | A. a > 0
B. a < 0
C. a≠ 0
D. a≠ 0,b ≠ 0 | | 27 | Only one of the root of ax2 + bx + c =0, a≠ 0 is zero if | A. $c = 0$
B. $c = 0,b \neq 0$
C. $b = 0,c = 0$
D. $b = 0,c \neq 0$ | | 28 | Ifα,β are non-real roots of ax2 + bx +c =0 (a,b,c∈ Q),then | A. $\alpha = \beta$
B. $\alpha\beta = 1$
C. $\alpha = \beta$
D. $\alpha = 1$ | | 29 | The roots of $(x - a)(x - b) = ab \times 2$ are always | A. Real B. Depends upon a C. Depends upon b D. Depends upon a and b | | 30 | Both the roots of the equation $(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0$ are always | A. Positive B. Negative C. Real D. None of these | | 31 | If ax + bx + c =0 is satisfied by every value of x,then | A. b = 0,c = 0
B. c = 0
C. b = 0
D. a = b = c = 0 | | 32 | If the roots of ax2 + b =0 are real and distinct then | A. ab > 0
B. a = 0
C. ab < 0
D. a > 0,b > 0 | | 33 | if one root of the equation ix2 - 2(i + 1) x +(2 - i)= 0 is 2 - i then the other root is | Ai
B. 2 + i
C. i
D. 2 - i | | | | A. Real and negative R. Non-real with negative real parts | | 34 | If $a > 0, b > 0$, $c > 0$ then the roots of the equation $ax2+bx+c=0$ are | C. Real and positive D. Nothing can be said | |----|---|---| | 35 | Roots of the equation x^2 - $7x + 10 = 0$ are | A. {2, 5}
B. {-2, 5}
C. {2,5}
D. {-2,-5} | | 36 | Roots of the equation x^2 + 7x + 12 = 0 are | A. {3, -4}
B. {-3, 4}
C. {3, 4}
D. {-3, -4} | | 37 | Roots of the equation x^2 - $x = 2$ are | A. {2, -1}
B. {1, 0}
C. {2, 1}
D. {-2, 1} | | 38 | $4^{1+x} + 4^{1-x} = 10$ is called | A. Reciprocal equation B. Exponential equation C. Radical equation D. None of these | | 39 | Question Image | A. Reciprocal equation B. Exponential equation C. Radical equation D. None of these | | 40 | x^4 - 3 x^3 + 3 x + 1 = 0 is called | A. Reciprocal equation B. Exponential equation C. Radical equation D. None of these | | 41 | w ¹⁵ = | A. 0
B. 1
C. w
D. w ² | | 42 | w ⁻¹ = | A. 0
B. 1
C. w
D. w ² | | 43 | w ⁴ = | A. 0
B. 1
C. w
D. w ² | | 44 | w ⁻¹² = | A. 0
B. 1
C. w
D. w ² | | 45 | w ¹¹ = | A. 0
B. 1
C. w
D. w ² | | 46 | Question Image | A. Polynomial of degree 0 B. Polynomial of degree 1 C. Polynomial of degree 2 D. Polynomial of degree n | | 47 | Question Image | A. Linear equation B. Quadratic equation C. Cubic equation D. None of these | | 48 | Question Image | A. Polynomial of degree 0 B. Polynomial of degree 2 C. Quadratic equation D. None of these | | 49 | 5x ³ + 3x - is a | A. Polynomial of degree 3 B. Polynomial of degree 2 C. Polynomial of degree 1 D. Polynomial of degree 0 | | 50 | The solution set of x^2 - $5x + 6 = 0$ is | A. {1, 3}
B. {2, 3}
C. {1, 2}
D. None of these | | 51 | The quadratic formula is | | | 52 | If a polynomial $P(x)$ is divided by x - a , then the remainder is | A. P(o)
B. P(-a)
C. P(a) | | D. None of the | se | |-------------------|-----| | D. I tollo of the | ,00 | | | | D. None of these | |----|---|---| | 53 | If x^3 + ax^2 - a^2x - a^3 is divided by x + a , then the remainder is | A. 0 B. a ³ C. 2a ³ D2a ³ | | 54 | 2x ³ + 3x + 9 is a | A. Polynomial of degree 3 B. Quadratic equation C. Cubic equation D. Polynomial of degree 2 | | 55 | If a polynomial $P(x)$ is divided by $x + a$, then the remiander is | A. P(a) B. P(-a) C. P(0) D. None of these | | 56 | If x^3 + $4x^3$ - $2x$ +5 is divided by x - 1, then the reminder is | A. 8 B. 6 C. 4 D. None of these | | 57 | If x^4 - $10x^2$ - $2x + 4$ is divided by $x + 3$, then the reminder is | A. 1
B. 0
C. 4
D. None of these | | 58 | If x^3 - x^2 + 5x+ 4 is divided by x - 2, then the reminder is | A. 0
B. 2
C. 18
D. 14 | | 59 | If $3x^4 + 4x^3 + x - 5$ is divided by $x + 1$, then the reminder is | A. 0
B. 7
C7
D. 5 | | 60 | Question Image | A. c/a
Bc/a
C. b/a
Db/a | | 61 | If S and P are the sum and the product of roots of a quadratic equation, then the quadratic equation is | A. x ² + Sx - P = 0 B. x ² - Sx + P = 0 C. x ² - Sx - P = 0 D. X ² + Sx + P = 0 | | 62 | The roots of the equation ax^2 + bx + c = 0 are real and equal if | A. b ² - 4ac < 0 B. b ² - 4ac = 0 C. b ² - 4ac > 0 D. None of these | | 63 | The roots of the equation ax^2 + bx + c = 0 are complex/imaginary if | A. b ² - 4ac < 0 B. b ² - 4ac = 0 C. b ² - 4ac > 0 D. None of these | | 64 | The roots of the equation $ax^2 + bx + x = 0$ are real and distinct if | A. b ² - 4ac <0 B. b ² - 4ac = 0 C. b ² - 4ac > 0 D. None of these | | 65 | Roots of the equation $x^2 + 2x + 3 = 0$ are | A. Real and equal B. Real and distinct C. Complex D. None of these | | 66 | Roots of the equation x^2 + 5x - 1 = 0 are | A. Rational B. Irrational C. Complex D. None of these | | 67 | Roots of the equation $2x^2$ - $7x + 3 = 0$ are | A. Rational B. Irrational C. Complex D. None of these | | 68 | Roots of the equation $9x^2$ - $12x + 4 = 0$ are | A. Real and equal B. Real and distinct C. Complex D. None of these | | 69 | If one root of the equation x^2 - $3x + a = 0$ is 2 then $a =$ | A. 0
B. 1
C. 2
D. 3 | | 70 | The discriminant of the quadratic equation $ax^2 + bx + c = 0$ is | A. b ² + 4ac B. b ² - 4ac | | | ··· | ∪. 4ac - p²D. a²- 4ac | |----|---|--| | 71 | If the roots of 3x2+kx + 12 = 0 are equal then k = | | | 72 | If w is a cube root of unity then 1 + w + w ² = | A. 1
B. 2
C. 0
D1 | | 73 | The roots of the equations will be equal if b^2 - 4ac is | A. Positive B. Negative C. 1 D. Zero | | 74 | The roots of the equation will be irrational if b^2 - 4ac is | A. Positive and perfect square B. Positive but not a perfect square C. Negative D. Zero | | 75 | If b^2 - 4ac is positive then the roots of the equation are | A. Real B. Imaginary C. Positive D. Negative | | 76 | If b^2 - 4ac = 0 then the roots of the equation are | A. Real and distinctB. Real and equalC. ImaginaryD. None of these | | 77 | The product of cube roots of unity is | A. Zero B. 1 C1 D. None of these | | 78 | For any integer k, w ⁿ = when n = 3k | A. 1
B. 2
C. 0
D4 | | 79 | w ²⁹ = | A. 0
B. 1
C. w
D. w ² | | 80 | w ⁷³ = | A. 0
B. 1
C. w
D. w ² | | 81 | w ²⁸ + w ³⁸ = | A. 0
B. 1
C. w
D1 | | 82 | $(2 + w) (2 + w^2) = \underline{\hspace{1cm}}$ | A. 1
B. 2
C. 3
D. 0 | | 83 | There are basic techniques for solving a quadratic equation | A. Two B. Three C. Four D. None of these | | 84 | Question Image | | | 85 | The product of the four fourth roots of unity is | A. 0
B. 1
C1
D. None of these | | 86 | The polynomial x - a is a factor of the polynomial $f(x)$ if and only if | A. f(a) is positive B. f(a) is negative C. f(a) = 0 D. None of these | | 87 | Two quadratic equation in which xy term is missing and the coefficients of x^2 and y^2 are equal, give a linear equation by | A. AdditionB. SubtractionC. MultiplicationD. Division | | 88 | If x^2 - 7x + a has remainder 1 when divided by x + 1, then a = | A7 B. 7 C. 0 D. None of these | | | | A5
R 5 | | 89 | If x - 2 is a factor of ax2- 12x + a = 2a, then a = | C. 0
D. 1 | |-----|--|---| | 90 | Find a if 1 is a root of the equation x^2 + ax + 2 = 0 | A. 3
B3
C. 2
D. 0 | | 91 | Which of the following is a factor of x^3 - $3x^2$ + $2x$ - 6 | A. x + 2
B. x + 3
C. x - 3
D. x - 4 | | 92 | Question Image | A. 0 B. 1 C. 2 D. None of these | | 93 | Question Image | | | 94 | Question Image | | | 95 | Question Image | | | 96 | Question Image | A1
B. 0
C. 2
D. 1 | | 97 | Question Image | A. 1
B1
C. 5
D. 2 | | 98 | The cube roots of 8 are | | | 99 | Question Image | A. 0
B. 1
C. 2
D. 3 | | 100 | Question Image | A. 2
B. 4
C. 8
D. 16 | | 101 | Question Image | A. 4
B. 6
C. 8
D. 10 | | 102 | Question Image | | | 103 | The condition for polynomial equation $ax^2 + bx + c = 0$ to be quadratic is | | | 104 | Question Image | | | 105 | Question Image | | | 106 | Both the roots of the equation $(x - b)(x - c) + (x - c)(x - a) + (x - a)(x - b) = 0$ are always | A. Positive B. Negative C. Real D. None of these | | 107 | If ax^2 + bx + x = 0 is satisfied by every value of x, then | A. b = 0, c = 0
B. c = 0
C. b = 0
D. a = b = c = 0 | | 108 | If the roots of ax^2 + b = 0 are real and distinct then | A. ab > 0
B. a = 0
C. ab < 0
D. a > 0, b > 0 | | 109 | If one root of the equation $ix^2 - 2(i + 1)x + (2 - i) = 0$ is 2 - i, then the other root is | Ai
B. 2 + i
C. i
D. 2 - i | | 110 | If $a > 0$, $b > 0$, $c > 0$, then the roots of the equation $ax^2 + bx + c = 0$ are | A. Real and negative B. Non-real with negative real parts C. Real and positive D. Nothing can be said | | 111 | The quadratic equation 8 $\sec^2 \theta$ 6 $\sec \theta$ +1 = 0 has | A. Infinitely many roots B. Exactly two roots C. Exactlv four roots | | | | D. No roots | |-----|--|---| | 112 | Question Image | A. b = c
B. a = c
C. a = c
D. b = 0 | | 113 | If the roots of ax^2 + bx + c =0 are equal in magnitude but opposite in sign, then | A. a = 0
B. b = 0
C. c = 0
D. None of these | | 114 | The value of p for which both the roots of the equation $4x^2 - 20x + (25p^2 + 15p - 66) = 0$ are less than 2, lies in | | | 115 | Question Image | | | 116 | The roots of the equation 2^{2X} 10.2 X + 16 = 0 are | A. 2, 8
B. 1, 3
C. 1, 8
D. 2, 3 | | 117 | Question Image | A. n if n is even B. 0 for any natural number n C. 1 if in odd D. None of these | | 118 | If x^2 + px + 1 is a factor of ax^3 + bx +c, then | A. a ² + c ² = -ab B. a ² - c ² = - ab C. a ² - c ² = ab D. None of these | | 119 | Question Image | A. (a - c) ² = b ² - c ² B. (a - c) ² = b ² + c ² C. (a + c) ² = b ² = b ² - c ² = b ² - c ² D. (a + c) ² = b ² + c ² = | | 120 | The set of real roots of the equation $\log_{(5x+4)}(2x+3)^3 - \log_{(2x+3)}(10x^2 + 23x + 12) = 1$ is | A. {-1}
B. {-3/5}
C. Empty set
D. {-1/3} | | 121 | The value of k (k > 0) for which the equation x^2 + kx + 64 = 0 and x^2 - 8x + k = 0 both will have real roots is | A. 8
B16
C64
D. 16 | | 122 | Question Image | A. Only one real solution B. Exactly three real solution C. Exactly one rational solution D. Non-real roots | | 123 | Question Image | A. Rational B. Irrational C. Non-real D. Zero | | 124 | If $2x^{1/3} + 2x^{-1/3} = 5$, then x is equal to | A. 1 or -1
B. 2 or 1/2
C. 8 or 1/8
D. 4 or 1/4 | | 125 | The equation $(\cos p - 1)x^2 + x(\cos p) + \sin p = 0$ in the variable x, has real roots, then p can take any value in the interval | A. (0, 2 <i>π</i>) B. (- <i>π</i> , -0) C. (0, <i>π</i>) D. None of these | | 126 | If the roots of x^2 + ax + b = 0 are non-real, then for all real x, x^2 + ax + b is | A. Negative B. Positive C. Zero D. Nothing can be said | |-----|--|---| | 127 | Question Image | A. 1
B. 2
C. 0
D. 4 | | 128 | Question Image | A. (-1, 2)
B. (-1, 1)
C. (1, 2)
D. {-1} | | 129 | In a quadratic equation with leading co-efficient 1, a student reads the co-obtain the roots as - 15 and -4. The correct roots are | A. 6, 10
B6, -10
C. 8, 8
D8, -8 | | | | A. Two real roots | | 130 | Question Image | B. Two positive roots C. Two negative roots D. One positive and one negative root | | 131 | Let the equation ax^2 - $bx + c = 0$ have distinct real roots both lying in the open interval (0, 1) where a, b, c are given to be positive integers. Then the value of the ordered triplet (a, b, c) can be | A. (5, 3, 1)
B. (4, 3, 2)
C. (5, 5, 1)
D. (6, 4, 1) | | 132 | If the roots of ax^2 - bx - c = 0 change by the same quantity, then the expression in a, b, c that does not change is | | | 133 | If α , β are the roots of ax ² + bx + c = 0 and α + h, β + h are the roots of px ² + qx + r=0, then h = | | | 134 | If the roots of ax^2 + bx + c = 0 (a > 0) be greater than unity, then | A. a + b + c = 0
B. a + b + c > 0
C. a + b + c < 0
D. None of these | | 135 | Question Image | A. 15
B. 9
C. 7
D. 8 | | 136 | Question Image | | | 137 | Question Image | A. Lies between 4 and 7 B. Lies between 5 and 9 C. Has no value between 4 and 7 D. Has no value between 5 and 9 | | 138 | For the equation $ x^2 + x - 6 = 0$, the roots are | A. One and only one real number B. Real with sum one C. Real with sum zero D. Real with product zero | | 139 | Root of the equation 3 ^{x-1} + 3 ^{1-x} = is | A. 2
B. 1
C. 0
D1 | | 140 | If $\sin \frac{\alpha}{\alpha}$ and $\cos \frac{\alpha}{\alpha}$ are the roots of the equation px ² + qx + r =0, then | A. p ² - q ² + 2pr = 0 B. (p + r) ² = q ² - r ² C. p ² + q ² - 2pr = 0 D. (p - r) ² = q ² + r ² = q ² + r ² = | | 141 | If a $(p + q)^2$ + bpq +c = 0 and a $(p + r)^2$ + 2 bpr + c = 0, then qr equals | A. p ² + c/a B. p ² + a/c C. p ² + c/a D. p ² - c/a | | 142 | A quadratic equation in \boldsymbol{x} is an equation that can be witten in the form | A. ax ² + b = 0 B. ax ³ +b ² +c=0 C. ax ² +bx+c=0 D. ax ³ +bx ³ +c=0 | | 143 | Another name of quadratic equation is | A. Polynomial
B. 2nd degree polynomial | | 170 | Amount nume of quadratic equation to | C. Linear equation D. simaltaneous equations | |-----|---|---| | 144 | A quadratic equation has two | A. roots B. degree C. variables D. constants | | 145 | The roots of the equation x2 +6x-7=0, are | A. 1
B. 2
C. 1 and -7
D7 | | 146 | the largest degree of the terms in the polynomials is called | A. terms of the polynomial B. degree of a polynomial C. co-efficient D. monomial | | 147 | The solution of the quadratic equation x2 -7x + 10=0, is | A. 2
B. 5
C. 2,5
D. 7 | | 148 | The graph of the quadratic equation is | A. Straight line B. Circle C. Parabola D. elipse | | 149 | In quadratic equation $f(x) = ax^2$, if $a > 0$, then the graph of parabola | A. Opens up B. Opens down C. close up D. symmetric w.r.t.x.axis | | 150 | In quadratic equation y=ax ³ +bx+c, if b and c are both zero then the graph is | A. Symmetric w.r.t.y-axis B. Symmetric w.r.t.x-axis C. Straight Line D. Circle | | 151 | In quadratic equation, if the replacement of y with -y leaves the equation unchanged, then the graph is | A. Straight line B. Circle C. Hyperbola D. Symmetric w.r.t.0 | | 152 | The root of the quadratic equation are | A. 3
B. 2
C. 1
D. 4 | | 153 | If a parabola opens down, then its vertex is at the | A. Right of the parabola B. Left of parabola C. Lowest point on the parabola D. Highest point on the parabola | | 154 | If $f(x) = ax^2$, and a>0, then the lowest point on the parabola is called. | A. Vertex of parabola B. Co-ordinates of parabola C. Roots of the equation D. Coefficient of the equation | | 155 | The standard parabolic form of the equation $f(x) = x^2 + 4x + 1$ is | A. x(x+4)+1 B. (x+2) ² -3 C. (x+4) ³ + 9 D. x(x-2) ² +1 | | 156 | The standard form of the quadratic function $f(x) = -x^2 + 4x + 2$, is | A. (x-2) ² +6 B(x-2) ² + 6 C. (x-3) ² +5 D. (x+4) ² -7 | | 157 | The minimum value of the quadratic function $f(x) = x^2 + 6x - 2$, is | A. 11
B. 6
C11
D. 13 | | 158 | The minimum value of the quadratic function $f(x) = 5 \times 2-11$, is | A11
B. 6
C7
D. 7 | | 159 | The vertex of the graph of the quadratic function $f(x) = x^2 - 10$, is | A. (0 , -10)
B. (-10,0)
C. (10,0)
D. (0,10) | | 160 | The vertex of the graph of the quadratic function $f(x) = -x^2 + 6x + 1$, is | A. (-3,10)
B. (-3,-10)
C. (3,10)
D. (3,-10) | | | | A. 4 | | 161 | The maximum value of the quadratic function $f(x) = -2x^2 + 20x$, is | B. 3
C. 50
D. 7 | |-----|---|--| | 162 | The maximum value of the quadratic function $f(x) = 2x^2-4x+7$, is | A. 3
B. 5
C3
D5 | | 163 | Which of the following is factor of $p(x) = 2x3 + 3x^2 + 3x + 2$? | A. x+1
B. 2x+1
C. 3x+1
D. 2x-1 | | 164 | (x-1) is a factor of | A. 2x ³ - 3x ² +9 B. 2x ³ -5x-8 C. 48x ²⁻ 46x-9 D. x ⁹ -1 | | 165 | If 3x4 +4x3+x5is divided by x+1, which of the following is the remainder | A. 7
B2
C. 6
D. 1 | | 166 | Which of the following is factor of x11+a11, where n is an odd integer | A. x-a
B. x+a
C. 2x-a
D. 2x+a | | 167 | If x-2 and x-1 both are factors of x^3 -3 x^3 +2x-4p, then P must equal to | A. 1
B. 2
C. 0
D2 | | 168 | The synthetic division method is only used to divide a polynomial by | A. quadratic equation B. binomial C. linear equation D. monomial | | 169 | If a polynomial p(x) is divided by x-c, then the remainder is | A. p(x) B. x-c C. c D. P(c) | | 170 | A polynomial $P(x)$ has a factor $(x-a)$ if $P(a) =$ | A. a
B. x
C. 1
D. 0 | | 171 | Each complex cube root of unity is square of | A. itself B. 1 C1 D. the other | | 172 | Sum of all the four forth roots of unity is | A. 1
B1
C. i
D. 0 | | 173 | Question Image | A. 0
B1-w ² | | 174 | Question Image | | | 175 | The solution of equation $x^2 + 2 = 0$ in the set of real number is | A. Infinite set B. Singleton set C. Null set D. None of these | | 176 | If a, β are the roots of the equation x2 - 8x + p = 0 and a2 + β 2= 40,then value of p is | A. 8
B. 12
C. 10
D. 14 | | 177 | If one root of $5x^2 + 13x + k = 0$ be the reciprocal of the other root the value of k is | A. 0
B. 2
C. 1
D. 5 | | 178 | The roots of the equation $4x - 3.2x + 2 + 32 = 0$ would include | A. 1 and 3
B. 1 and 4
C. 1 and 2
D. 2 and 3 | | 179 | The two parts into which 57 should be divided so that their product is 782 are | A. 43,14
B. 34,23
C. 33,24 | | 180 | If x - 1 is a factor of x4 - 5x2 + 4 then other factor is | D. 44,13
A. (x + 2)2(x - 1)
B. (x + 2)(x - 1)2
C. (x+2)(x2- x- 2)
D. (x + 2)2(x - 1)2 | |-----|--|--| | 181 | (1+w)(1+w2)(1+w4)(1+w8)50 factors | A. 0
B1
C. 1
D. 2 | | 182 | A polynomial of arbitrary degree | A. $f(x) = 0$
B. $f(x) = x$
C. $f(x) = a$
D. $f(x) = ax + b, a \neq 0$ | | 183 | The roots of $ax2 + bx + c = 0$ are always unequal if | A. b2 - 4ac = 0
B. b2- 4ac ≠ 0
C. b2- 4ac > 0
D. b2- 4ac ≥ 0 | | 184 | The sum of the roots of the equation $x^2 - 6x + 2 = 0$ is | A6
B. 2
C2
D. 6 | | 185 | The positive value of k for which the equation $x^2 + kx + 64 = 0$ has one of the roots 0 | A. 4
B. 64
C. 8
D. All values of k | | 186 | If a,β are the roots of the equation $x^2 + kx + 12 = 0$ such that $a - \beta = 1$, the value of k is | A. 0
B. ±1
C. ±5
D. ±7 | | 187 | Consider the equation $px2 + qx + r = 0$ where p,q,r are real The roots are equal in magnitude but opposite in sign when | A. $q = 0$, $r = 0$, $p \neq 0$
B. $p = 0$, $qr \neq 0$
C. $r = 0$, $pq \neq 0$
D. $q = 0$, $pq \neq 0$ | | 188 | If the equation x2+2x-3=0 and x2+3x-k=0 have a common root then the non - zero value of k is | A. 1
B. 3
C. 2
D. 4 | | 189 | The condition for ax2 + bx c to be expressed as the product of linear polynomials is | A. b4 - 4ac =0
B. b4- 4ac ≥0
C. b4- 4ac <0
D. b4= 4ac | | 190 | The expression x2 - x + 1 has | A. One proper linear factor B. No proper linear factor C. Two proper linear factors D. None of these | | 191 | The value of x for which the polynomials $x^2 - 1$ and $x^2 - 2x + 1$ vanish simultaneously is | A. 2
B. 1
C1
D2 | | 192 | $(x+a)(x+b)(x+c)(x+) = k$, $k\neq 0$ is reducible to quadratic form only if | A. a+b=c+d B. a+c=b+d C. a+d=b+c D. All are correct | | 193 | If w+w2 is a root of $(x+1)(x+2)(x+3)(x+4) = k$, then | A. k=0
B. k=1
C. k=w
D. k=w2 | | 194 | If a,β are the roots of ax2+bx+c=0,the equation whose roots are doubled is | A. ay2 +2by+c=0 B. ay2+2by+4c=0 C. ay2+2by+c=0 D. ay2+by+4c=0 | | 195 | The roots of ax2+bx+c=0 are | A. Rational ⇔ b2 -4 ac ≥ 0 B. Irrational ⇔ b2-4 ac > 0 C. Real ⇔ b2-4 ac ≠ 0 D. Rational ⇔ b2-4 ac = 0 | | 196 | The roots of (b-c)x2+(c-a) x+a-b=0 are equal if | A. 2b = a+c
B. 2a = b+c
C. 2c = a+b
D. a + b + c =0 | | 197 | The roots of px2 - (p-q)x-q=0 are | A. equal B. Irrational C. Rational | | | | D. Imaginary | |-----|--|---| | 198 | The graph of a quadratic function is | A. Circle B. Ellipse C. Parabola D. Hexagon | | 199 | The condition for polynomial equation $ax2 + bx + c = 0$ to be quadratic is | A. a > 0
B. a < 0
C. a≠ 0
D. a≠ 0,b ≠ 0 | | 200 | Only one of the root of $ax^2 + bx + c = 0$, $a \ne 0$ is zero if | A. $c = 0$
B. $c = 0,b \neq 0$
C. $b = 0,c = 0$
D. $b = 0,c \neq 0$ | | 201 | Ifα,β are non-real roots of ax2 + bx +c =0 (a,b,c∈ Q),then | A. $\alpha = \beta$
B. $\alpha\beta = 1$
C. $\alpha = \beta$
D. $\alpha = 1$ | | 202 | The roots of $(x - a)(x - b) = ab \times 2$ are always | A. Real B. Depends upon a C. Depends upon b D. Depends upon a and b | | 203 | Both the roots of the equation $(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0$ are always | A. Positive B. Negative C. Real D. None of these | | 204 | If ax + bx + c =0 is satisfied by every value of x,then | A. b = 0,c = 0
B. c = 0
C. b = 0
D. a = b = c = 0 | | 205 | If the roots of ax2 + b =0 are real and distinct then | A. ab > 0
B. a = 0
C. ab < 0
D. a > 0,b > 0 | | 206 | if one root of the equation ix2 - $2(i + 1) \times +(2 - i) = 0$ is 2 - i then the other root is | Ai
B. 2 + i
C. i
D. 2 - i | | 207 | If $a > 0, b > 0$, $c > 0$ then the roots of the equation $ax2+bx+c=0$ are | A. Real and negativeB. Non-real with negative real partsC. Real and positiveD. Nothing can be said | | 208 | Roots of the equation x^2 - 7x + 10 = 0 are | A. {2, 5}
B. {-2, 5}
C. {2,5}
D. {-2,-5} | | 209 | Roots of the equation $x^2 + 7x + 12 = 0$ are | A. {3, -4}
B. {-3, 4}
C. {3, 4}
D. {-3, -4} | | 210 | Roots of the equation x^2 - $x = 2$ are | A. {2, -1}
B. {1, 0}
C. {2, 1}
D. {-2, 1} | | 211 | $4^{1+x}+4^{1-x}=10$ is called | A. Reciprocal equation B. Exponential equation C. Radical equation D. None of these | | 212 | Question Image | A. Reciprocal equation B. Exponential equation C. Radical equation D. None of these | | 213 | x^4 - 3 x^3 + 3 x + 1 = 0 is called | A. Reciprocal equation B. Exponential equation C. Radical equation D. None of these | | 214 | w ¹⁵ = | A. 0
B. 1
C. w
D. w ² | | | | A. 0
B 1 | | 215 | W ⁻¹ = | C. w
D. w ² | |-----|--|---| | 216 | w ⁴ = | A. 0
B. 1
C. w
D. w ² | | 217 | w ⁻¹² = | A. 0
B. 1
C. w
D. w ² | | 218 | w ¹¹ = | A. 0
B. 1
C. w
D. w ² | | 219 | Question Image | A. Polynomial of degree 0 B. Polynomial of degree 1 C. Polynomial of degree 2 D. Polynomial of degree n | | 220 | Question Image | A. Linear equation B. Quadratic equation C. Cubic equation D. None of these | | 221 | Question Image | A. Polynomial of degree 0 B. Polynomial of degree 2 C. Quadratic equation D. None of these | | 222 | 5x ³ + 3x - is a | A. Polynomial of degree 3 B. Polynomial of degree 2 C. Polynomial of degree 1 D. Polynomial of degree 0 | | 223 | The solution set of x^2 - $5x + 6 = 0$ is | A. {1, 3} B. {2, 3} C. {1, 2} D. None of these | | 224 | The quadratic formula is | | | 225 | If a polynomial P(x) is divided by x - a, then the remainder is | A. P(o) B. P(-a) C. P(a) D. None of these | | 226 | If x^3 + ax^2 - a^2x - a^3 is divided by x + a , then the remainder is | A. 0 B. a ³ C. 2a ³ D2a ³ | | 227 | 2x ³ + 3x + 9 is a | A. Polynomial of degree 3 B. Quadratic equation C. Cubic equation D. Polynomial of degree 2 | | 228 | If a polynomial $P(x)$ is divided by $x + a$, then the remiander is | A. P(a) B. P(-a) C. P(0) D. None of these | | 229 | If x^3 + $4x^3$ - $2x$ +5 is divided by x - 1, then the reminder is | A. 8 B. 6 C. 4 D. None of these | | 230 | If x^4 - $10x^2$ - $2x + 4$ is divided by $x + 3$, then the reminder is | A. 1
B. 0
C. 4
D. None of these | | 231 | If x^3 - x^2 + 5x+ 4 is divided by x - 2, then the reminder is | A. 0
B. 2
C. 18
D. 14 | | 232 | If $3x^4 + 4x^3 + x - 5$ is divided by $x + 1$, then the reminder is | A. 0
B. 7
C7
D. 5 | | 233 | Question Image | A. c/a Bc/a C. b/a Db/a | **D**. **D**/U | 234 | If S and P are the sum and the product of roots of a quadratic equation, then the quadratic equation is | A. x ² + Sx - P = 0
B. x ² - Sx + P = 0
C. x ² - Sx - P = 0
D. X ² + Sx + P = 0 | |-----|---|--| | 235 | The roots of the equation ax^2 + bx + c = 0 are real and equal if | A. b ² - 4ac < 0 B. b ² - 4ac = 0 C. b ² - 4ac > 0 D. None of these | | 236 | The roots of the equation $ax^2 + bx + c = 0$ are complex/imaginary if | A. b ² - 4ac < 0 B. b ² - 4ac = 0 C. b ² - 4ac > 0 D. None of these | | 237 | The roots of the equation $ax^2 + bx + x = 0$ are real and distinct if | A. b ² - 4ac <0 B. b ² - 4ac = 0 C. b ² - 4ac > 0 D. None of these | | 238 | Roots of the equation $x^2 + 2x + 3 = 0$ are | A. Real and equal B. Real and distinct C. Complex D. None of these | | 239 | Roots of the equation $x^2 + 5x - 1 = 0$ are | A. Rational B. Irrational C. Complex D. None of these | | 240 | Roots of the equation $2x^2$ - $7x + 3 = 0$ are | A. Rational B. Irrational C. Complex D. None of these | | 241 | Roots of the equation $9x^2$ - $12x + 4 = 0$ are | A. Real and equal B. Real and distinct C. Complex D. None of these | | 242 | If one root of the equation x^2 - $3x + a = 0$ is 2 then $a = $ | A. 0
B. 1
C. 2
D. 3 | | 243 | The discriminant of the quadratic equation $ax^2 + bx + c = 0$ is | A. b ² + 4ac B. b ² - 4ac C. 4ac - b ² D. a ² - 4ac | | 244 | If the roots of 3x2+kx + 12 = 0 are equal then k = | | | 245 | If w is a cube root of unity then 1 + w + w ² = | A. 1
B. 2
C. 0
D1 | | 246 | The roots of the equations will be equal if b^2 - 4ac is | A. Positive B. Negative C. 1 D. Zero | | 247 | The roots of the equation will be irrational if b^2 - 4ac is | A. Positive and perfect square B. Positive but not a perfect square C. Negative D. Zero | | 248 | If b^2 - 4ac is positive then the roots of the equation are | A. Real B. Imaginary C. Positive D. Negative | | 249 | If b^2 - 4ac = 0 then the roots of the equation are | A. Real and distinct B. Real and equal C. Imaginary D. None of these | | 250 | The product of cube roots of unity is | A. Zero B. 1 C1 D. None of these | | 251 | For any integer k, w ⁿ = when n = 3k | A. 1
B. 2
C. 0
D4 | | | | | | 252 | w ²⁹ = | A. 0
B. 1
C. w
D. w ² | |-----|---|--| | 253 | w ⁷³ = | A. 0
B. 1
C. w
D. w ² | | 254 | $w^{28} + w^{38} = $ | A. 0
B. 1
C. w
D1 | | 255 | $(2 + w) (2 + w^2) = $ | A. 1
B. 2
C. 3
D. 0 | | 256 | There are basic techniques for solving a quadratic equation | A. Two B. Three C. Four D. None of these | | 257 | Question Image | | | 258 | The product of the four fourth roots of unity is | A. 0
B. 1
C1
D. None of these | | 259 | The polynomial x - a is a factor of the polynomial f(x) if and only if | A. f(a) is positive B. f(a) is negative C. f(a) = 0 D. None of these | | 260 | Two quadratic equation in which xy term is missing and the coefficients of x^2 and y^2 are equal, give a linear equation by | A. Addition B. Subtraction C. Multiplication D. Division | | 261 | If x^2 - 7x + a has remainder 1 when divided by x + 1, then a = | A7 B. 7 C. 0 D. None of these | | 262 | If x - 2 is a factor of ax2- 12x + a = 2a, then a = | A5
B. 5
C. 0
D. 1 | | 263 | Find a if 1 is a root of the equation $x^2 + ax + 2 = 0$ | A. 3
B3
C. 2
D. 0 | | 264 | Which of the following is a factor of x^3 - $3x^2$ + $2x$ - 6 | A. x + 2
B. x + 3
C. x - 3
D. x - 4 | | 265 | Question Image | A. 0
B. 1
C. 2
D. None of these | | 266 | Question Image | | | 267 | Question Image | | | 268 | Question Image | | | 269 | Question Image | A1
B. 0
C. 2
D. 1 | | 270 | Question Image | A. 1
B1
C. 5
D. 2 | | 271 | The cube roots of 8 are | | | 272 | Question Image | A. 0
B. 1 | | | | C. Z
D. 3 | |-----|--|--| | 273 | Question Image | A. 2
B. 4
C. 8
D. 16 | | 274 | Question Image | A. 4
B. 6
C. 8
D. 10 | | 275 | Question Image | | | 276 | The condition for polynomial equation $ax^2 + bx + c = 0$ to be quadratic is | | | 277 | Question Image | | | 278 | Question Image | | | 279 | Both the roots of the equation $(x - b)(x - c) + (x - c)(x - a) + (x - a)(x - b) = 0$ are always | A. Positive B. Negative C. Real D. None of these | | 280 | If ax^2 + bx + x = 0 is satisfied by every value of x , then | A. b = 0, c = 0
B. c = 0
C. b = 0
D. a = b = c = 0 | | 281 | If the roots of ax^2 + b = 0 are real and distinct then | A. ab > 0
B. a = 0
C. ab < 0
D. a > 0, b > 0 | | 282 | If one root of the equation $ix^2 - 2(i + 1) x + (2 - i) = 0$ is 2 - i, then the other root is | Ai
B. 2 + i
C. i
D. 2 - i | | 283 | If $a > 0$, $b > 0$, $c > 0$, then the roots of the equation $ax^2 + bx + c = 0$ are | A. Real and negative B. Non-real with negative real parts C. Real and positive D. Nothing can be said | | 284 | The quadratic equation 8 $\sec^2 \theta$ - 6 $\sec \theta$ +1 = 0 has | A. Infinitely many roots B. Exactly two roots C. Exactly four roots D. No roots | | 285 | Question Image | A. b = c
B. a = c
C. a = c
D. b = 0 | | 286 | If the roots of ax^2 + bx + c =0 are equal in magnitude but opposite in sign, then | A. a = 0
B. b = 0
C. c = 0
D. None of these | | 287 | The value of p for which both the roots of the equation $4x^2 - 20x + (25p^2 + 15p - 66) = 0$ are less than 2, lies in | | | 288 | Question Image | | | 289 | The roots of the equation $2^{2X_{-}}$ 10.2 $^{X_{+}}$ 16 = 0 are | A. 2, 8
B. 1, 3
C. 1, 8
D. 2, 3 | | 290 | Question Image | A. n if n is even B. 0 for any natural number n C. 1 if in odd D. None of these | | 291 | If x^2 + px + 1 is a factor of ax^3 + bx +c, then | A. a ² + c ² = -ab B. a ² - c ² = -ab C. a ² - c ² = ab D. None of these | | 292 | Question Image | A. (a - c) ²
b ² c ²
B. (a - c) ² =
b ² + c ² | | | - | C. (a + c) ² =
b ² - o ²
D. (a + c) ² =
b ² + c ² | |-----|--|--| | 293 | The set of real roots of the equation $log_{(5x+4)}(2x+3)^3 - log_{(2x+3)}(10x^2 + 23x + 12) = 1$ is | A. {-1}
B. {-3/5}
C. Empty set
D. {-1/3} | | 294 | The value of k (k > 0) for which the equation x^2 + kx + 64 = 0 and x^2 - 8x + k = 0 both will have real roots is | A. 8
B16
C64
D. 16 | | 295 | Question Image | A. Only one real solution B. Exactly three real solution C. Exactly one rational solution D. Non-real roots | | 296 | Question Image | A. Rational B. Irrational C. Non-real D. Zero | | 297 | If $2x^{1/3}+2x^{-1/3}=5$, then x is equal to | A. 1 or -1
B. 2 or 1/2
C. 8 or 1/8
D. 4 or 1/4 | | 298 | The equation $(\cos p - 1)x^2 + x(\cos p) + \sin p = 0$ in the variable x, has real roots, then p can take any value in the interval | A. (0, 2 <i>π</i>) B. (- <i>π</i> , -0) C. (0, <i>π</i> , -0) D. None of these | | 299 | If the roots of x^2 + ax + b = 0 are non-real, then for all real x, x^2 + ax + b is | A. Negative B. Positive C. Zero D. Nothing can be said | | 300 | Question Image | A. 1
B. 2
C. 0
D. 4 | | 301 | Question Image | A. (-1, 2)
B. (-1, 1)
C. (1, 2)
D. {-1} | | 302 | In a quadratic equation with leading co-efficient 1, a student reads the co-obtain the roots as - 15 and -4. The correct roots are | A. 6, 10
B6, -10
C. 8, 8
D8, -8 | | 303 | Question Image | A. Two real roots B. Two positive roots C. Two negative roots D. One positive and one negative root | | 304 | Let the equation ax^2 - $bx + c = 0$ have distinct real roots both lying in the open interval $(0, 1)$ where a , b , c are given to be positive integers. Then the value of the ordered triplet (a, b, c) can be | A. (5, 3, 1)
B. (4, 3, 2)
C. (5, 5, 1)
D. (6, 4, 1) | | 305 | If the roots of ax^2 - bx - c = 0 change by the same quantity, then the expression in a, b, c that does not change is | | | 306 | If α , β are the roots of ax ² + bx + c = 0 and α + h, β + h are the roots of px ² + qx + r=0, then h = | | | 3∩7 | If the roots of $\alpha/2$, by $1/\alpha = 0$ ($\alpha > 0$) be greater than unity, then | A. a + b + c = 0
B. a + b + c > 0 | | JU1 | ii the roots of $ax^+ + bx + c = 0$ (a > 0) be greater than unity, then | C. a + b + c < 0
D. None of these | |-----|---|---| | 308 | Question Image | A. 15
B. 9
C. 7
D. 8 | | 309 | Question Image | | | 310 | Question Image | A. Lies between 4 and 7 B. Lies between 5 and 9 C. Has no value between 4 and 7 D. Has no value between 5 and 9 | | 311 | For the equation $ x^2 + x - 6 = 0$, the roots are | A. One and only one real number B. Real with sum one C. Real with sum zero D. Real with product zero | | 312 | Root of the equation 3 ^{x-1} + 3 ^{1-x} = is | A. 2
B. 1
C. 0
D1 | | 313 | If $\sin \frac{\alpha}{\alpha}$ and $\cos \frac{\alpha}{\alpha}$ are the roots of the equation $px^2 + qx + r = 0$, then | A. p ² - q ² + 2pr = 0 B. (p + r) ² = q ² - r ² C. p ² + q ² - 2pr = 0 D. (p - r) ² = q ² = q ² = | | 314 | If a $(p + q)^2$ + bpq +c = 0 and a $(p + r)^2$ + 2 bpr + c = 0, then qr equals | A. p ² + c/a B. p ² + a/c C. p ² + c/a D. p ² - c/a | | 315 | A quadratic equation in \boldsymbol{x} is an equation that can be witten in the form | A. ax ² + b = 0 B. ax ³ +b ² +c=0 C. ax ² +bx+c=0 D. ax ³ +bx ³ | | 316 | Another name of quadratic equation is | A. Polynomial B. 2nd degree polynomial C. Linear equation D. simaltaneous equations | | 317 | A quadratic equation has two | A. roots B. degree C. variables D. constants | | 318 | The roots of the equation x2 +6x-7=0, are | A. 1
B. 2
C. 1 and -7
D7 | | 319 | the largest degree of the terms in the polynomials is called | A. terms of the polynomial B. degree of a polynomial C. co-efficient D. monomial | | 320 | The solution of the quadratic equation $x^2 - 7x + 10 = 0$, is | A. 2
B. 5
C. 2,5
D. 7 | | 321 | The graph of the quadratic equation is | A. Straight line B. Circle C. Parabola D. elipse | | 322 | In quadratic equation $f(x) = ax^2$, if $a > 0$, then the graph of parabola | A. Opens up B. Opens down C. close up D. symmetric w.r.t.x.axis | | 323 | In quadratic equation y=ax ³ +bx+c, if b and c are both zero then the graph is | A. Symmetric w.r.t.y-axis B. Symmetric w.r.t.x-axis C. Straight Line D. Circle | | 324 | In quadratic equation, if the replacement of y with -y leaves the equation unchanged, then the graph is | A. Straight line
B. Circle
C. Hyperbola | | | | D. Symmetric w.r.t.0 | |-----|--|--| | 325 | The root of the quadratic equation are | A. 3
B. 2
C. 1
D. 4 | | 326 | If a parabola opens down, then its vertex is at the | A. Right of the parabola B. Left of parabola C. Lowest point on the parabola D. Highest point on the parabola | | 327 | If $f(x) = ax^2$, and a>0, then the lowest point on the parabola is called. | A. Vertex of parabola B. Co-ordinates of parabola C. Roots of the equation D. Coefficient of the equation | | 328 | The standard parabolic form of the equation $f(x) = x^2 + 4x + 1$ is | A. x(x+4)+1 B. (x+2) ² -3 C. (x+4) ³ + 9 D. x(x-2) ² +1 | | 329 | The standard form of the quadratic function $f(x) = -x^2 + 4x + 2$, is | A. (x-2) ² +6 B(x-2) ² + 6 C. (x-3) ² +5 D. (x+4) ² -7 | | 330 | The minimum value of the quadratic function $f(x) = x^2 + 6x - 2$, is | A. 11
B. 6
C11
D. 13 | | 331 | The minimum value of the quadratic function $f(x) = 5 \times 2-11$, is | A11
B. 6
C7
D. 7 | | 332 | The vertex of the graph of the quadratic function $f(x) = x^2 - 10$, is | A. (0, -10)
B. (-10,0)
C. (10,0)
D. (0,10) | | 333 | The vertex of the graph of the quadratic function $f(x) = -x^2 + 6x + 1$, is | A. (-3,10)
B. (-3,-10)
C. (3,10)
D. (3,-10) | | 334 | The maximum value of the quadratic function $f(x) = -2x2+20x$, is | A. 4
B. 3
C. 50
D. 7 | | 335 | The maximum value of the quadratic function $f(x) = 2x^2-4x+7$, is | A. 3
B. 5
C3
D5 | | 336 | Which of the following is factor of $p(x) = 2x3 + 3x2 + 3x + 2$? | A. x+1
B. 2x+1
C. 3x+1
D. 2x-1 | | 337 | (x-1) is a factor of | A. 2x ³ -
3x ² +9
B. 2x ³ -5x-8
C. 48x ²⁻ 46x-9
D. x ⁹ -1 | | 338 | If 3x4 +4x3+x5is divided by x+1 , which of the following is the remainder | A. 7
B2
C. 6
D. 1 | | 339 | Which of the following is factor of x11+a11, where n is an odd integer | A. x-a
B. x+a
C. 2x-a
D. 2x+a | | 340 | If x-2 and x-1 both are factors of x^3 -3 x^3 +2x-4p, then P must equal to | A. 1
B. 2
C. 0
D2 | | 341 | The synthetic division method is only used to divide a polynomial by | A. quadratic equation B. binomial C. linear equation D. monomial | | | | A n(v) | D. Symmetric w.r.t.0 A. p(x) | 342 | If a polynomial p(x) is divided by x-c, then the remainder is | B. x-c
C. c
D. P(c) | |-----|---|--------------------------------| | 343 | A polynomial $P(x)$ has a factor $(x-a)$ if $P(a) =$ | A. a
B. x
C. 1
D. 0 | | 344 | Each complex cube root of unity is square of | A. itself B. 1 C1 D. the other | | 345 | Sum of all the four forth roots of unity is | A. 1
B1
C. i
D. 0 | | 346 | Question Image | A. 0
B1-w ² |