

ECAT Mathematics Chapter 6 Quadratic Equations

Sr	Questions	Answers Choice
1	Question Image	A. $(a - c)^2 = b^2 - c^2$ B. $(a - c)^2 = b^2 + c^2$ C. $(a + c)^2 = b^2 - c^2$ D. $(a + c)^2 = b^2 + c^2$
2	Question Image	A. Rational B. Irrational C. Non-real D. Zero
3	Roots of the equation $x^2 + 5x - 1 = 0$ are	A. Rational B. Irrational C. Complex D. None of these
4	The condition for polynomial equation $ax^2 + bx + c = 0$ to be quadratic is	A. $a > 0$ B. $a < 0$ C. $a \neq 0$ D. $a \neq 0, b \neq 0$
5	The roots of the equations will be equal if $b^2 - 4ac$ is	A. Positive B. Negative C. 1 D. Zero
6	Question Image	A. $p^2 - q^2 = 2pr$ B. $(p + r)^2 = q^2 - r^2$ C. $p^2 + q^2 = 2pr$ D. $(p - r)^2 = q^2 + r^2$
7	If $\sin\alpha$ and $\cos\alpha$ are the roots of the equation $px^2 + qx + r = 0$, then	A. 1 B. -1 C. 5 D. 2
8	Question Image	A. 1 B. 2 C. 0 D. -2
9	If $x-2$ and $x-1$ both are factors of $x^3 - 3x^2 + 2x - 4p$, then P must equal to	A. 1 B. 2 C. 0 D. -2
10	Consider the equation $px^2 + qx + r = 0$ where p, q, r are real. The roots are equal in magnitude but opposite in sign when	A. $q = 0, r = 0, p \neq 0$ B. $p = 0, qr \neq 0$ C. $r = 0, pq \neq 0$ D. $q = 0, pq \neq 0$
11	Question Image	A. 4 B. 6 C. 8 D. 10
12	If α, β are the roots of $ax^2 + bx + c = 0$, the equation whose roots are doubled is	A. $ay^2 + 2by + c = 0$ B. $ay^2 + 2by + 4c = 0$ C. $ay^2 + 2by + c = 0$ D. $ay^2 + by + 4c = 0$
13	$5x^3 + 3x -$ is a _____	A. Polynomial of degree 3 B. Polynomial of degree 2 C. Polynomial of degree 1 D. Polynomial of degree 0
14	If the roots of $x^2 + ax + b = 0$ are non-real, then for all real x , $x^2 + ax + b$ is	A. Negative B. Positive C. Zero D. Nothing can be said

15 Both the roots of the equation $(x-b)(x-c) + (x-c)(x-a) + (x-a)(x-b) = 0$ are always

A. Positive
B. Negative
C. Real
D. None of these

16 If $ax + bx + c = 0$ is satisfied by every value of x , then

A. $b = 0, c = 0$
B. $c = 0$
C. $b = 0$
D. $a = b = c = 0$

17 If α, β are the roots of the equation $x^2 - 8x + p = 0$ and $\alpha^2 + \beta^2 = 40$, then value of p is

A. 8
B. 12
C. 10
D. 14

18 $x^4 - 3x^3 + 3x + 1 = 0$ is called _____

A. Reciprocal equation
B. Exponential equation
C. Radical equation
D. None of these

19 Roots of the equation $9x^2 - 12x + 4 = 0$ are

A. Real and equal
B. Real and distinct
C. Complex
D. None of these

20 The condition for $ax^2 + bx + c$ to be expressed as the product of linear polynomials is

A. $b^2 - 4ac = 0$
B. $b^2 - 4ac \geq 0$
C. $b^2 - 4ac < 0$
D. $b^2 = 4ac$
