

ECAT Mathematics Chapter 5 Matrices and Determinants

Sr	Questions	Answers Choice
1	Two matrices A and B are conformable for the product AB if	A. Both A and B are square B. Both A and B are symmetric C. Number of rows of A = number of columns of B D. Number of columns of A = number of rows of B
2	Question Image	
3	Question Image	A. I_3 B. rI_3 C. r D. none
4	Question Image	
5	Question Image	
6	Question Image	A. 1 B. 0 C. 3 D. -1
7	Question Image	
8	Question Image	A. 2×2 B. 2×3 C. 3×2 D. 3×3
9	Question Image	A. 0 B. 1 C. 2 D. 4
10	Question Image	A. $a = 4, b = 1$ B. $a = 1, b = -4$ C. $a = 0, b = 4$ D. $a = 2, b = 4$
11	Question Image	A. An upper triangular matrix B. A lower triangular matrix C. A diagonal matrix D. A null matrix
12	For a square matrix A, if $A = A^t$, then A is called	A. Matrix B. Transpose C. Symmetric D. Non-symmetric
13	Rank of matrix $[1 \ 3 \ 5 \ 0]$ is	A. 1 B. 3 C. 2 D. 4
14	Cofactor of an element a_{ij} denoted by A_{ij} is	A. $(-2)^{i+j}$ B. M_{ij} C. $(-1)^{i+j} M_{ij}$ D. None of above
15	The transport of a null matrix is	A. Row matrix B. Column matrix C. Square matrix D. Null matrix
16	Question Image	A. 5 B. 15 C. 10 D. 20
17	An equation of the form $ax + by = k$ is homogeneous linear equation when:	
18	Question Image	D. all

19 Every identity matrix is

- A. Row-vector
- B. Scalar
- C. Column-vector
- D. All

20 A square matrix A for which $A^t = -A$ is called a

- A. Column matrix
- B. Symmetric matrix
- C. Skew-symmetric matrix
- D. Row matrix