

ECAT Mathematics Chapter 21 Linear Inequalities and Linear Programming

Sr	Questions	Answers Choice
1	(0,0) is in the solution of the inequality	A. $x + y > 3$ B. $x - y > 2$ C. $3x + 2y > 5$ D. $3x - 2y < 2$
2	The real numbers which satisfy an inequality form its	A. solution B. coefficient C. domain D. range
3	A _____ divides the plane into left and right half planes.	A. Vertical line B. Horizontal line C. Non vertical line D. Inequality
4	(1, 1) is the in the solution of the inequality	A. $3x + 4y > 3$ B. $2x + 3y < 2$ C. $4x = 3y > 5$ D. $2c - 3y > 2$
5	Which is not a half plane	A. $ax + by < c$ B. $ax + by > c$ C. Both A and B D. None
6	The total cost of 2 apples and 3 oranges is \$1.70, which of the following is true	A. The cost of one apple B. The cost of one orange C. Both have equal cost per item D. Cost of each single item can not be determined
7	A point of a solution region where two of its boundary lines intersect, is called	A. Boundary B. Inequality C. Half plane D. Vertex
8	$x = 1$ is in the solution of the inequality	A. $x + 1 > 0$ B. $x - 2 > 0$ C. $3x - 1 < 0$ D. $x + 2 < 0$
9	$3x + 4 \leq 0$ is	A. not inequality B. equation C. identity D. inequality
10	The solution set of the inequality $ax + by < c$ is	A. straight line B. half plane C. parabola D. none of these
11	$x = _____$ is in the solution of $2x - 5 > 0$	A. 0 B. 2 C. -2 D. 3
12	A point of a solution regions where two of its boundary lines intersect, is called:	A. Vertex of the solution B. Feasible point C. Point of inequality D. Null point of the solution region
13	The point _____ is in the solution of the inequality $2x - 3y < 4$	A. (0, -2) B. (1, -3) C. (2, 2) D. (3, 0)
14	Optimal solution is found by evaluation the objective function at	A. All point of feasible region B. Corner point C. Origin D. None
15	The feasible region which can be enclosed within a circle is called	A. Bounded region B. Convex region C. Unbounded region

D. None

16 $s > t$ then

- A. $(s - t)^2 > (t - s)^2$
- B. $(s - t)^2 < (t - s)^2$
- C. $(s - t)^2 \geq (t - s)^2$
- D. None

17 The corner point of the boundary lines, $x - 2y - 2x + y = 2$ is:

- A. (2,6)
- B. (6,2)
- C. (-2,2)
- D. (2,-2)

18 (1, 2) is in the solution of the inequality

- A. $2x + y > 8$
- B. $2x + y < 6$
- C. $2x - y > 1$
- D. $2x + 3y < 2$

19 $3x + 4 > 0$ is

- A. equation
- B. identity
- C. inequality
- D. none of these

20 The maximum value of $Z = 3x + 4y$ subjected to the constraints $x + y \leq 40$, $x + 2y \leq 60$, $x \geq 0$ and $y \geq 0$ is

- A. 120
- B. 100
- C. 140
- D. 160