

Chemical Equilibrium

	No3Ho≓ 2NHo	A. By adding NH _{3.} B. By removing
--	-------------	--

14	Which of the following change will favorthe formation of more NH3at equilibrium in above reaction:	background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial; ">H < sub>2. C. By decreasing pressure. D. By increasing pressure.
15	Question Image	A. Pressure change B. Temperature change C. Concentration change D. Catalyst
16	The ionization constant of an acid is expressed in term of the following constant	A. Kw B. Kn C. Ka D. Kb
17	The solubility of KClO ₃ salt in water is decreased by adding	A. NaCIO ₃ B. NaCI C. KCIO ₄ D. KCI
18	I a chemical reaction equilibrium is said to have been established when :	A. Rate of opposing reactions are equal. B. Rate constants of opposing reactions are equal. C. Opposing reactions stop. D. Concentration of reactants and products are equal.
19	Extent to H ₂ + L ₂ → 2HI can be increased by :	A. Increasing temperature. <o:p></o:p> B. Increasing product. <o:p></o:p> C. Increasing pressure. <o:p></o:p> D. Adding a catalyst. <o:p></o:p>
20	In an exothermic reaction, a 10° rise in temperature will	A. Decrease the value of equilibrium constant B. Double the value of K _c C. Not produce any change in K _c D. Produce some increase in K _c
21	K_b for NH ₄ OH is 1.81 x 10 ⁻⁵ , then K_a value of its conjugate base is	A. 1.81 x 10 ⁺⁵ B. 1.81 x 10 ⁻⁹ C. 5.5 x 10 ⁻⁹ D. 5.5 x 10 ⁻¹⁰
22	1 mol of N ₂ O ₄ was decomposed according to given equation in 1dm $_3$ container. At equilibrium x mole of N ₂ O ₄ have dissociated. What is the value of K _C :	A. 2x/(1-x) ^{2<o:p></o:p>} B. 4x ² /(1-x) <o:p></o:p> C. 4x/(1-x) <o:p></o:p> D. 2x/(1-x) <o:p></o:p>
23	Question Image	A. Total pressure B. Amount of A ₂ and B ₂ C. Temperature D. Catalyst
24	Question Image	A. Low pressure B. High pressure C. High temperature D. High concentration of SO ₂
		A. <0:p> <0:p> <0:p> <0:p> <span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, sans-serif; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-</p></td></tr><tr><td>25</td><td><math>N_2</math> + <math>O_2</math> <math>\rightleftharpoons</math> 2NO The unit of <math>K_c</math> for tis reaction will be:</td><td>origin: initial; background-clip: initial;">mol⁻² dm⁻³ dm⁻³ c:p> C. <o:p></o:p> <o:p></o:p> mol⁻¹ dm⁻³ <o:p></o:p> D. <o:p></o:p> mol⁻¹
		ondin, iniliai, backuruunu-ciib, iniliai; 2001/SUD2-

background-image: initial; background-position:

. ._-. ._. -- .. .

		2 dm ⁺³ <o:p></o:p>
26	Question Image	
27	For what value of K _{calmost} forward reaction is complete:	A. K _{c =} 10 ³⁰ <0:p> B. <o:p></o:p> K _{c =} 10 ⁻³⁰ <0:p> C. <o:p></o:p> <o:p></o:p> K _{c =} 0 <o:p></o:p> K _{c =} 10 ^{-40 K_{c =}10^{-40 K_{c =}10^{-40 -40}}}
28	Which of the following factors will favour the reverse reaction in a chemical equilibrium?	A. Increase in concentration of one of the reactants B. Increase in concentration of one of the products C. Removal of one of the products regularly D. None of these
29	Product of concentration of ions raised to the power equal to the co-efficient of ions in balanced equation for saturated solution of a salt is called	A. lonic product B. Equilibrium constant K _c C. K _w D. Solubility product (K _{sp})
		A. HF is stable and does not decompose even at 2000°C
30	Question Image	B. HF is stable and slowly decomposes at 2000°C C. HF is strong acid D. HF produces equal moles of hydrogen and fluorin
31	The correct relation b/wK $_{\mbox{\scriptsize c}\mbox{\scriptsize and}}$ K $_{\mbox{\scriptsize p}\mbox{\scriptsize is}}$:	A. K _p = K _c [P/N] ^{Δn<o:p></o:p>} B. K _{c =} K _{p C. K_{p =}K_p(RT) ^{Δn}<o:p></o:p> D. K_{p =}K_c(RT) ^{Δn}<o:p></o:p> D. K_{p =}K_c(RT) ^{Δn}<o:p></o:p> D. K_{p =}K_c(RT) ^{Δn}<o:p></o:p>}
32	The relation between Kc and Kp is	
33	Question Image	A. 0.12 B. 0.50 C. 0.25 D. 4.00
34	Question Image	A. Reversible reaction B. Irreversible reaction C. Spontaneous reaction D. None of these
35	Two moles of HI was heated in a sealed tube at 440°C till the equilibrium was reached. HI was found to be 22% decomposed. The equilibrium constant for dissociation is	A. 0.282 B. 0.0796 C. 0.0199 D. 1.99
36	If the difference of pKa values of the two acids is 2, then	A. Acid with smaller pKa is 10 times stronger acid B. Acid with greater pKa is 10 times stronger acid C. Acid with smaller pKa is 100 times stronger acid
37	Question Image	D. Acid with greater pKa is 100 times stronger acid A. At equilibrium there is no further change in the concentration of HI B. At equilibrium concentration of I ₂ remains constant C. At equilibrium concentration of H ₂ remains unaltered D. At equilibrium the rate of formation of HI is equal to the rate of decomposition of HI
38	pH and pKa of the buffer are related by Henderson equation which is	
39	Question Image	A. Equal volumes of N ₂ and H ₂ are reacting B. Equal masses of N ₂ and H ₂ are reacting C. The reaction has stopped D. The same amount of ammonia is formed as is decomposed into N ₂ and H ₂
40	A reaction is reversible because :	A. Products are stable. B. Reactants are reactive. C. Products are reactive. D. Reactants re stable.

41	1.1 mol of A is mixed with 2.2 mol of B and the mixture is kept in on litre flask till the equilibrium is reached. At equilibrium, 0.2 mol of C is formed. If the equilibrium reaction is A+2B 2C+D, the value of equilibrium constant is	A. 0.002 B. 0.004 C. 0.001 D. 0.003
42	When a weak acid is dissolved in water or a weak base dissolved in water, then in both cases the conjugate acid base pair is produced. The ionization constants K_a and K_b of a pair are related with each other as	A. K _a = K _b B. K _a . K _b = K _w C. K _a . K _w = K _b D. K _b . K _w = K _a
43	$N_2 + 3H_2 \rightleftharpoons 2NH_3$ The unit of K_c for tis reaction will be:	A. mol² dm⁻⁶/span>/span>/span>/span>/span>/span>/span>/span>/span>/span>style="font-size: 10.5pt; line-height: 107%; font-family: Arial, sansserif; background-image: initial; background-position: initial; background-attachment: initial; background-origin: initial; background-elip: initial;">mol⁻² dm⁻⁶/span>/span>/span>/span>style="font-size: 10.5pt; line-height: 107%; font-family: Arial, sansserif; background-image: initial; background-position: initial; background-size: initial; background-position: initial; background-attachment: initial; background-origin: initial; background-elip: initial; background-origin: initial; background-limage: initial; background-position: initial; background-image: initial; background-position: initial; background-image: initial; background-position: initial; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-size: initial; background-repeat: initial; background-size: initial; background-repeat: initial; background-origin: initial; background-attachment: initial; background-repeat: initial; background-origin: initial; background-
44	For which system does the equilibrium constant, kc has units of (concentration)?	A. <pre>A. <pcleas="msonormal">N₂+3H₂2NH₃<o:p></o:p> B. <pcleas="msonormal">H₂+L₂2HL<o:p></o:p> C. <pcleas="msonormal">2NO₂N₂N₂N₂N₂N₂N₂</pcleas="msonormal"></pcleas="msonormal"></pcleas="msonormal"></pre>
45	The value of $K_{\mbox{\footnotesize p}}$ is greater than $K_{\mbox{\footnotesize C}}$ for a gaseous reaction when	A. Number of molecules of products is greater than the reactants B. Number of molecules of reactants is greater than those of products C. Number of molecules of reactants and products equal D. Catalyst is added
46	Law of mass action was given by :	A. Guldberg and Waage. B. Berkeley and Hartly. C. Ramsay and Reyleigh. D. Berthelot.
47	Units of Kw are	A. Mole dm ⁻³ B. Mole ² dm ⁻³ C. Mole ² dm ⁻⁶ D. Mole ² dm ⁻³
48	What happens when reaction is at equilibrium and more reactant is added :	A. Forward reaction rate is increased. B. Forward reaction rate is decreased. C. Backward reaction rate is increased. D. Equilibrium remains unchanged.
49	Question Image	A. 1 B. 10 C. 5 D. 0.33
50	Ammonium carbonate when heated to 200°C gives a mixture of NH ₃ and CO ₂ vapour with a density of 13.0. What is the degree of dissociation of ammonia carbonate?	A. 3/2 B. 1/2 C. 2 D. 1
51	Question Image	A. Favour the formation of N ₂ O ₄ B. Favour the decomposition of N ₂ O ₄

		C. Not after the equilibrium D. Stop the reaction
52	Question Image	A. 0.5 B. 4.0 C. 2.5 D. 0.25
53	The concentration of reactants is increased by x, then equilibrium constant K becomes	A. In K/x B. K/x C. K + x D. K
54	On passing HCl gas through a saturated solution of commercial sodium chloride, pure crystals of NaCl are precipitated due to	A. Increase in pH of the solution B. Decrease in pH of the solution C. Common ion effect D. Increase in ionization of NaCl
55	Question Image	A. Forward reaction is favoured B. Backward reaction is favoured C. No effect D. None of the above
56	Question Image	A. Decrease in temperature favour more dissolution of the salt B. Increase in temperature favour more dissolution of the salt C. Lowering pressure favour more dissolution of the salt D. Increasing pressure favour more dissolution of the salt
57	Question Image	A. Temperature is increased B. Pressure is increased C. HCl is added D. HCl is removed
58	Hydrogen gas and iodine vapours combine to form HI at 425°C, the same composition of mixture is present if we start with decomposition of HI. It suggests	A. A static equilibrium B. Law of mass action C. A dynamic equlibrium D. Irreversible reaction
59	Question Image	A. The value of K _p falls with a rise in temperature B. The value of K _p falls with increasing pressure C. Adding V ₂ O ₅ catalyst increase the equilibrium yield of sulphur trioxide equilibrium yield of sulphur trioxide D. The value of K _p is equal to K _c
60	An excess of aqueous silver nitrate is added to aqueous barium chloride and precipitate is removed by filtration. What are the main ion in filtrate?	A. Ag ⁺ and NO ₃₋ only <o:p></o:p> B. Ag ⁺ and Ba ² and NO ⁻³ <o:p> C. Ba² and NO⁻³ and NO⁻³-3 and NO⁻³ and NO⁻³-3 and NO⁻³ and NO⁻³ and NO⁻³ and NO⁻³ and NO⁻³ and NO⁻³-3 and NO⁻³ and NO⁻³ and NO⁻³ and NO⁻³ and NO⁻³ and NO⁻³-3 and NO⁻³ and NO⁻³ and NO⁻³ and NO⁻³ and NO⁻³ and NO⁻³-4 and NO⁻³ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴-4 and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴-4 and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴-4 and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴-4 and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴-4 and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴ and NO⁻⁴-4 and NO⁻⁴ and NO⁻⁴ and NO⁻⁴</o:p>
61	pH of the human blood which is essentially maintained constant due to carbonates, biocarbonates, phosphates etc., is	A. 7.00 B. 7.25 C. 7.35 D. 7.47
62	For the above reaction the relationship b/w \mathbf{k}_{C} and \mathbf{k}_{p} will be :	A. K _p = K _c RT <o:p></o:p> B. Kp = K _c (RT) ₋₁ <o:p></o:p> C. K _p = K _c (RT) _p = K _c (RT)-2 <o:p> D. K_c = K_c = K_p = K<sub< td=""></sub<></o:p>
		A. 2.0 x 10⁻¹⁰

63	The solubility product of AgCl is 2.0 x $10^{-3} \text{mol}^2 \text{dm}^{-6}$, The maximum concentration of Ag ion in the solution is :	3 <o:p></o:p> B1.41 x 10⁻¹⁰ mol dm^{-3<o:p></o:p>} C1.0^{<span inline"="" style="font-size: 10.5pt; line-height: 107%; font-family: Arial, sans-serif; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-size: initial; background-repeat: initial; background-delip: initial; background-origin: initial; background-origin: initial; background-size: initial; background-image: initial; background-origin: initial; background-size: initial; background-origin: initial; background-drip: initial; background-origin: initial; background-elip: initial; background-origin: initial; background-oripi: oripi: or</th></tr><tr><td>64</td><td>pH of water is 7, if 0.01 M NaOH is added, than its pH is</td><td>A. 12 B. 14 C. zero</td></tr><tr><td>65</td><td>A buffer of a 0.09 molar acetic acid and 0.11 molar sodium acetate has pH = <math>4.83</math>. If 0.01 mole NaOH in 1 dm<math>^3</math>of the buffer solution is added, then pH of the buffer becomes</td><td>D. 10 A. 4.74 B. 4.92 C. 5.0 D. 4.0</td></tr><tr><td>66</td><td><math display=">N_2 +3H_2\rightleftharpoons 2NH_3 + Heat for above equation, themaximum product will be obtained at :<td>A. Low temperature at high pressure. B. High temperature and low pressure. C. High temperature and high pressure. D. Low temperature at low pressure.</td>}	A. Low temperature at high pressure. B. High temperature and low pressure. C. High temperature and high pressure. D. Low temperature at low pressure.
67	The equilibrium constant in a reversible chemical reaction at a given temperature	A. Depends on the initial concentration of the reactants B. Depends on the concentration of one of the products at equilibrium C. Does not depend on the initial concentration of rectants D. It is characteristic of the reaction	
68	Which of the following in an example of reversible reaction		
69	Question Image	A. Increases B. Decreases C. Remains same D. Cannot be predicted	
70	Buffers having pH less than 7 are made	A. Mixture of weak acid + salt of it with strong base B. Mixture of weak acid + salt of it with weak base C. Mixture of weak base + salt of it with strong acid D. Mixture of weak base + salt of it with weak base	
71	K_{sp} value for PbSO ₄ = 1.8 x 10 ⁻⁸ mole ² dm ⁻⁶ . The maximum concentration of Pb ⁺⁺ ions is	A. 1.34 x 10 ⁻⁴ mole dm ⁻³ B. 1.8 x 10 ⁻⁴ C. 3.6 x 10 ⁻¹⁶ mole dm ⁻³ D. 1.0 x 10 ⁻⁸ mole dm ⁻³	
72	0.1 MHCl has pH = 1.0, it is about 100 times stronger than acetic acid. Then pH of acetic acid will be	A. 0.1 B. 2.0 C. 1.3 D. 3.0	
73	Addition of solid NaHCO $_3$ in water causes ionization of NaCHO $_3$ its K $_a$ = 4.7 x 10 $^{-1}$. Then this solution has character	A. Acidic B. Very weakly basic C. Alkaline D. Neutral	
		A To main high temperature	

		o main mgr. tomporataro
74	In a lime kiln, to get higher yield of CO ₂ , the measure that can be taken is	B. To pump out CO ₂ C. To remove Cao D. To add more CaCO ₃
75	The solubility of PbF $_2$ is 2.6 x 10 $^{-3}$ mole dm $^{-3}$ then its solubility product is	A. 2.6 x 10 ⁻³ B. 6.76 x 10 ⁻⁶ C. 5.2 x 10 ⁻⁶ D. 7.0 x 10 ⁻⁸
76	In 1000 molecules of 0.001 M acetic acid the number of H [†] ions is 12.6, then its percentage of ionization is	A. 1.33% B. 1.26% C. 12.6 D. 1%
77	Which of the following solution have zero pH	A. 1 M HCI B. MH _{SO₄ C. 0.1 M HNO₃ D. 1 M CH₃}
78	The rate of forward reaction is two times that of the reverse reaction at a given temperature and identical concentration, K equilibrium is	A. 0.5 B. 1.5 C. 2.5 D. 2.0
79	When the rate of formation of reactants is equal to the rate of formation of products, this is known as	A. Chemical reaction B. Chemical equilibrium C. Chemical kinetics D. None
		A. 2000°C and 10 atmosphere
80	The optimum conditions of temperature and pressure to get maximum NH3form N2and H2gases is	B. 0°C and 1 atmosphere C. 400°C and 200-300 atmosphere
		D. 200°C and 100 atmosphere A. Shift reaction toward forward direction
81	Question Image	B. Shift reaction backward C. Lower the value of K _c D. No change in reaction
82	For which system does the equilibrium constant, KC has units of concentration	
83	A solution having pH = 4 its OH ion concentration in mole dm ⁻³ is	A. 1.0 x 10 ⁻⁴ B. 1.0 x 10 ⁻¹⁰ C. 1.0 x 10 ⁻¹⁴ D. 1 x 10 ⁰
		A. 8
84	Question Image	B. 4 C. 9 D. 3
		A. High temperature and low pressure
85	Question Image	B. Low temperature and high pressure C. Low temperature and low pressure D. High temperature and high pressure
86	The state of equilibrium refers to	A. State of rest B. Dynamic state C. Stationary state D. State of inertness
87	Question Image	A. Le-chatlier's principle B. Only adding catalyst C. Decreasing pressure D. Decreasing temperature
88	A chemical reaction A>B is said to be in equilibrium when :	 A. Rate of transformation of A to B is equal to B to A. B. 50% reactant has been changed to B. C. Conversion of A to B is 50% complete D. Complete conversion of A to B has taken place.
		A. [A] = [B]
89	Question Image	B. [A] < [B] C. [B] = [C] D. [A] > [B]
90	Question Image	A. Moles per dm ³ B. Partial pressures C. Number of moles D. Mole fractions
91	The rate of reaction :	A. Remain same as reaction proceeds. B. May decrease or increase as reaction proceeds. C. Increase as reaction proceeds. D. Decreases as reaction proceeds.
	Acetic acid is 1.33% ionized. In 1000 molecules of 0.1 M acetic acid the	A. 1.33 B. 13.3

92	number of H ⁺ ions is	C. 1.33 D. 1
93	Question Image	A. 32 B. 64 C. 16 D. 4
94	Question Image	A. Forward B. Backward C. Already in equilibrium D. K _c is never less
95	$\ensuremath{lfk}_{\ensuremath{C}}\xspace$ of a reaction productis very large, it indicates that equilibrium occurs :	A. With the help of a catalyst.B. With no forward reaction.C. At a low product concentration.D. At a high product concentration.
96	Which statement about the following equilibrium in correct? $2SO_{2(g)} + O_{2(g)}2sO_{3(g)} H = -188.3 \text{ KJ mol-1}$	A. T value of K _{p falls witha rise in temperate.} B. The value of K _{p falls withincreasing pressure} class="MsoNormal"> <o:p></o:p> C. Adding V _{2O} ₅ catalyst increase the equilibrium yield of sulfur trioxide <o:p></o:p> D. The value of K _{p is equal to} K _p E. class="MsoNormal"> <o:p></o:p> E. class="MsoNormal"> <o:p></o:p>
97	Question Image	A. 450°C B. 250°C C. 850°C D. 1000°C
98	Question Image	A. KC = KP B. Kp = KcRT C. Kp = kc(RT) ⁻² D. Kp = Kc(RT) ⁻¹
99	When rate of forward reaction is equal to rate of backward reaction, then the equilibrium established is called	A. Chemical equilibrium B. Static equilibrium C. Dynamic equilibrium D. None of these
100	Which one of the following has no units of its $K_{\text{\tiny C}}$ value	
101	Question Image	A. High temperature and low pressure B. Low temperature and low pressure C. Low temperature and high pressure D. High temperature and high pressure
102	At certain temperature, 50% of HI is dissociated into H2and I2the equilibrium constant is	A. 1.0 B. 3.0 C. 0.5 D. 0.25
103	The rate of a chemical reaction is directly;y proportional to product of molar concentration of reaction substance it is called:	A. Low of conservation of energy. B. Law of mass action. C. Rate law . D. Active mass rule.
104	The ionic product of H ⁺ ions and OH in water is called ionization constant of water Kw. The value of Kw at 25°C is	A. 0.11 x 10 ⁻¹⁴ B. 0.30 x 10 ⁻¹⁴ C. 1.0 x 10 ⁻¹⁴ D. 3 x 10 ⁻¹⁴
105	Le-chatlier's principle is applied on the reversible reaction in order to	A. Determine the rate of reaction B. Predict the direction of reaction C. Determine the extent of reaction D. Find best conditions for favorable shifting the position of equilibrium
106	Question Image	A. 0.073 B. 0.147 C. 0.05 D. 0.026
107	$\text{N}_2\text{O}_4{\rightleftharpoons}~2\text{NO}_2$ For the above reaction, which of the Following expression of K_c correct :	A. <0:p> <c =="" [="" n<sub="">2O₄]/[NO₂] ₂O₄]/[NO₂] ₂O₄]/[NO₂] B. Kc = [N₂O₄]/ [NO₂] <o:p></o:p> C. Kc = [N₂O] ₂O] ₂O] ₂O] ₂O] ₂O] ₂O] ₂O ₁O ₂O ₀O _{O ₀O _{O ₀O ₀O}}</c>

		<pre><o:p></o:p> D. Kc = [N₂O₄]/[N O₂] <o:p></o:p></pre>
108	Question Image	A. 4 mole per dm ³ B. 2 mole per dm ³ C. 0.33 mole per dm ³ D. 0.67 mole per dm ³
109	In which of the following cases, the reaction goes farthest to completion	A. K = 10 ³ B. K = 10 ⁻² C. K = 10 D. K = 10 ⁰
110	Law of mass action states that rate of chemical reaction is directly proportional to the product of active masses of the reactants. The term active mass means	A. Mass in grams converted to products B. Number of moles C. Number of moles per dm ³ of reactants D. Total pressures of the reactants
111	2SO ₂ + O ₂ ⇌2SO ₂ H= 188KJ mole ⁻¹ Which statement about following equilibrium is correct:	A. The value of of<!--</td-->
112	ph of the buffer CH ₃ COOh + CH ₃ COONa is 3.76. If the mixture contains 1 molar acetic acid and 0.1 molar sodium acetate, then pKa of this buffer is	A. 3.76 B. 4.76 C. 5.76 D. 6.76
113	K_a value of HF acid is 6.7 x 10 ⁻¹⁵ the acid is a	A. Weak acid B. Moderately strong acid C. Strong acid D. Very weak acid
114	A solution has pH = 0, its H ⁺ ion concentration is	A. 1 x 10 ⁻¹⁴ B. 1 x 10 ¹⁴ C. 1 x 10 ¹ D. 1

115	Almost forward reaction is complete when value of $k_{\mbox{\scriptsize C}:}$	A. Neither larger nor very small. B. Very small. C. Very large. D. Negligible.
116	Question Image	A. 0.60 B. 1.67 C. 0.66 D. 2.6
117	The substance which increases rate of reaction but remains unchanged at the end of reaction is called :	A. Catalyst. B. Indicator. C. Promoter. D. Activator.
118	Question Image	
119	Chemical equilibrium involving reactants and products in more than one phase is called	A. Static B. Dynamic C. Homogeneous D. Heterogeneous
120	Which of the following favours the reverse reaction in chemical equilibrium?	A. Increasing the concentration of the reactant B. Removal of the least one of the products at regular intervals C. Increasing the concentration of one or more of the products D. None of these
121	K_b value of NH ₄ OH is 1.81 x 10 ⁻⁵ and its conjugate acid has K_a = 5.7 x 10 ⁻¹⁰ pKb of the base is 4.74, pKa of its conjugate acid is	A4.74 B. 4.74 C. 10 D. 9.26
122	The pH of 10 ⁻³ mole dm ⁻³ of an aqueous solution of H ₂ SO ₄ is	A. 3.0 B. 2.7 C. 2.0 D. 1.5
123	When H_2 and I_2 are mixed and equilibrium is attained, then	A. Amount of HI formed is equal to the amount of H ₂ dissociated B. HI dissociation stops C. The reaction stops completely D. None of these
124	According to Le-Chatelier's principal, adding heat to a solid and liquid in equilibrium will cause the	A. Amount of solid to decrease B. Amount of liquid to decrease C. Temperature to rise D. Temperature to fall
125	Which one of the following is a buffer	A. HCI + NaCI solution B. CH ₃ COOH + CH ₃ COONH ₄ solution C. H ₂ SO ₄ + CaSO ₄ solution D. CH ₃ COOH + CH ₃ COOH +
126	For which system does the equilibrium constant. $\ensuremath{\mbox{K}}_{\mbox{\scriptsize C}}$ has units of	
		A. Reaction occurs at STP
127	Question Image	B. Reaction is exothermic C. Reaction is endothermic D. Number of moles of production and reactant are same
128	pKb value of NH ₄ OH is 4.74. If the concentration of NH ₄ OH is 1 molar containing 0.1 molar NH ₄ Cl, then pH of this buffer will be	A. 3.74 B. 10.26 C. 4.74 D. 9.26
129	The solubility product of AgCl is $2.0 \times 10^{-10} \text{mol}^2 \text{dm}^{-6}$ The maximum concentration of Ag $^+$ ions in the solution is	A. 2.0 x 10 ⁻¹⁰ mol dm ⁻³ B. 1.41 x 10 ⁻⁵ mol dm ⁻³ C. 1.0 x 10 ⁻¹⁰ mol dm ⁻³ D. 4.0 x 10 ⁻²⁰ mol dm ⁻³
130	The rate of which the reaction proceeds is directly proportional to the product of the active masses of the reactants is according to	A. Law of mass action B. Le Chateliers principle C. Equilibrium law D. Law of constant proportion
131	Question Image	A. 0.02 B. 0.2 C. 50 D. 25
132	1 mole of N2and 2 moles of H2are allowed to react in a 1 dm ³ vessel. At aquilibrium 0.8 mole of NHois formed. The concentration of Hoin the vessel is	A. 0.6 mole B. 0.8 mole

	equilibrium v.v mole of Nitgia tormed. The concentration of HZIII the vesser is	C. 0.2 mole D. 0.4 mole
133	In exothermic reversible reaction increase in temperature shift the equilibrium to :	A. Remains unchanged. B. Product side. C. Reactant side. D. None of above.
134	Question Image	A. Increase in concentration of 1 B. Decrease in concentration of I ₂ C. Increase in temperature D. Increase in total pressure
135	A gas bulb is filled with NO2gas and immersed in an ice bath at 0°C which becomes colourless after sometimes. This colourless gas will be	A. NO ₂ B. N ₂ O C. N ₂ O ₄ D. N ₂ O ₅
136	H_2 + L_2 2Hl In the above equilibrium system, if the concentration of reactants at 25°C is increased, the value K_{C} will :	A. Remains Constant B. Increases C. Cecreases D. Depends upon nature of reactans
137	In a reversible reaction, two substances are in equilibrium. If the concentration of each one is reduced to half, the equilibrium constant will be	A. Reduced to half of its original value B. Doubled C. Same D. Reduced to one fourth its original value
138	Which one of the following is not a buffer	A. H ₂ CO ₃ + NaHCO ₃ solution B. H ₃ PO ₄ + NaH ₂ PO ₄ solution C. HI + NaI solution D. NH ₄ CI solution
139	If pH of buffer of 1 mole dm ⁻³ of HCOOH + 0.1 mole dm ⁻³ HCOONa having pKa = 3.78 is	A. 1.78 B. 2.78 C. 3.78 D. 4.78
140	Whenever a week base is dissolved in water, it give its conjugate acid. similarly a weak acid in water produces its conjugate base. This conjugate acid-base pair concept is stated by	A. Law of mass action B. Le-charlier's principle C. Common ion effect D. Lowery Bronsted concept
141	Which of the following is a characteristic of a reversible reaction?	A. It never proceeds to completion B. It can be influenced by a catalyst C. It proceeds only in the forward direction D. Number of moles of reactants and products are equal
142	Reactions that proceed on both sides and never go to completion are called	A. Irreversible reactions B. Reversible reactions C. Opposing reactions D. Spontaneous reactions
143	pH of 0.1 molar HCl solution is	A. 1 B. zero C. 13 D. 14
144	In the particular reaction for the value ${\rm K_{c1x}10^{-25}}$ which statement is correct :	A. Almost forward reaction is completed. B. Amount of reactant is negligible as compared to product. C. Amount of product is negligible as compared to reactant. D. Amount of product is equal to amount of reactant.
145	strength of an acid can be determined by	A. P ^{ka} B. P ^{kp} C. P ^{oH} D. P ^{kw}
146	Question Image	
		A. The value of

font-family: Calibri;mso-fareast-theme-font:minor-latin;mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi; mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA">K_pfalls with arise in

B. The value ofK_pis equal to<span

147	Which statement about following equilibrium is correct :	style= tont-size: 11.upt;line-neight: 107 %; tont-family: " Calibri", sans-serif;mso-asciitheme-font:minor-latin;mso-fareast-font-family: Calibri;mso-fareast-theme-font:minor-latin;mso-bidi-font-family: " Times New Roman";mso-bidi-theme-font:minor-bidi; mso-ansi-language: EN-US;mso-fareast-language: EN-US;mso-bidi-language: AR-SA">K _{C.} C. The value of <span k<sub="" style="font-family: Calibri, sans-serif; font-size: 11pt; line-height: 15.6933px,">pfalls with the increase pressure. D. Adding V₂O₅ catalyst increase the equilibrium yield of Sulphur trioxide. <pc class="MsoNormal"><o:p></o:p></pc>
148	A buffer solution of 0.1 molar HCOOH and 0.1 molar HCCONa has pH = 3.78 To is 0.01 molar HCl is added, then pH of the buffer solution becomes	A. 2.78 B. 4.78 C. 3.78 D. 3.70
149	The solubility product of $Ca(OH)_2$ is 6.5 x 10^{-6} . The concentration of OH ions is	A. 1.175 x 10 ⁻² B. 2.35 x 10 ⁻² C. 3.25 x 10 ⁻³ D. 3.25 x 10 ⁻⁴
150	An aqueous solution is neutral when its	A. pH = 14 B. pH = zero C. pH = 7 D. Kw = 10 ⁻⁷
151	pH of 1 molar NaOH is	A. 7 B. zero C. 14 D. 10
152	The solubility product of AgCl is 2.0 x 10 ⁻¹⁰ mole ² dm ⁻⁶ . The maximum concentration of Ag ⁺ ions in the solution is	A. 2.0 x 10 ⁻¹⁰ mole dm ⁻³ B. 1.41 x 10 ⁻⁵ mole dm ⁻³ C. 1.0 x 10 ⁻¹⁰ D. 4.0 x 10 ⁻²⁰ mole dm ⁻³
153	The ph of 10-3 mole dm-3 of an aqueous solution of $\rm H_2SO_4$ is :	A. 3.0 <o:p></o:p> B. 2.7 <o:p></o:p> C. 2.0 D. 1.5 <o:p></o:p>
154	Question Image	A. Complete conversion of A to B has taken place B. Conversion of A to B is only 50% complete C. Only 10% conversion of A to B has taken place D. The rate of transformation of A to B is just equal to rate of transformation of B to A in the system
155	A solution of NaOH has pH = 13, then concentration of NaOH is	A. 10 ⁻¹³ M B. 10 ¹³ M C. 10 ⁻¹ M D. 10 ⁺¹ M
156	Question Image	A. Introduction of an inert gas at constant volume B. Introduction of PCl ₃ (g) at constant C. Introduction of PCl ₅ (g) at constant volume D. Introduction of Cl ₂ at constant volume
157	An excess of aqueous silver nitrate is added to aqueous barium chloride and precipitate is removed by filtration. What are the main ions in the filtrate	
158	Base buffer solution can be prepared by mixing	A. Weak acid and its salt B. Strong acid and its salt with weak base C. Weak base and its salt with strong acid D. Strong base and its salt with weak acid
159	Question Image	A. Moles ⁻² dm ⁺⁶ B. No units C. Mole dm ⁻³ D. Mole ⁻¹ dm ⁻³